Metabolic barrier against bisphenol A in rat uterine endometrium.

نویسندگان

  • Junya Matsumoto
  • Hidetomo Iwano
  • Hiroki Inoue
  • Naomi Iwano
  • Naoko Yamashiki
  • Hiroshi Yokota
چکیده

Exposure to environmental chemicals with estrogenic activity during the early stage of pregnancy can seriously affect embryonic development and the maintenance of pregnancy. To estimate the metabolism and pharmacodynamics of a xenoestrogen, bisphenol A, in a reproductive organ, the metabolite of bisphenol A was analyzed after incubating a rat uterine sac in buffer solutions containing the chemical. When the inner or the outer side of the uterine sac was exposed to bisphenol A, the concentration of the parent chemical was decreased in buffer solution and then, only one metabolite, bisphenol A-glucuronide, was observed only in the outer, that is, the maternal, side. A small amount of the parent chemical could pass through the uterine sac without being modified. Uridine diphosphate (UDP)-glucuronosyltransferase (UGT) was shown by immunohistochemical staining analysis to be distributed in epithelial cells of the endometrium, oviduct, and uterine glands. Based on measurements of enzyme activity and on Western blot analysis, UGT activity toward bisphenol A and UGT protein were identified in the microsomal fractions prepared from rat uterus. UGT isoforms, such as UGT1A1, 1A2, 1A5, 1A6, and 1A7, were expressed, and MRP-1 (multidrug resistance-associated protein) and MRP-3, which are well-known to be transporters of various drug-glucuronides, were detected in the rat uterus by reverse transcription-PCR. These results elucidate the rat uterine barrier system by showing that most bisphenol A perfused into the uterus was glucuronidated in the epithelium, resulting in transport of glucuronides to the maternal side.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of quercetin on bisphenol A-induced mitochondrial toxicity in rat liver

Objective(s): Recognized as a distinguished environmental and global toxicant, Bisphenol A (BPA) affects the liver, which is a vital body organ, by the induction of oxidative stress. The present study was designed to investigate the protective effect of quercetin against BPA in hepatotoxicity in Wistar rats and also, the activity of mitochondrial enzymes were evaluated...

متن کامل

Effects of whole life exposure to Bisphenol A or 17α-ethinyl estradiol in uterus of nulligravida CD1 mice

Bisphenol A (BPA) is an endocrine disrupting chemical (EDC) with known estrogenic activity. Exposure to BPA in adult mice was shown previously to increase uterine pathology with associated alterations in the immune response and fibrosis. Reported here are uterine histopathology findings from CD1 mice exposed to BPA or 17α-ethinyl estradiol at multiple doses from conception through postnatal day...

متن کامل

Expression of VLA1, VLA2 and VLA3 Integrin Molecules in Uterine Endometrium of Infertile Women with Unexplained Aetiology in Ahwaz-Iran

Background: Recent attention has focused on the expression of integrin molecules within the endometrium, and their relation to infertility. Objective: The present prospective study was undertaken to determine whether the endometrium of women with unexplained infertility differs in the expression of very late activation antigens (VLA) from the endometrium of normal fertile women. Methods: Thirty...

متن کامل

Evaluation of oral and intravenous route pharmacokinetics, plasma protein binding, and uterine tissue dose metrics of bisphenol A: a physiologically based pharmacokinetic approach.

Bisphenol A (BPA) is a weakly estrogenic monomer used in the production of polycarbonate plastic and epoxy resins, both of which are used in food contact and other applications. A physiologically based pharmacokinetic (PBPK) model of BPA pharmacokinetics in rats and humans was developed to provide a physiological context in which the processes controlling BPA pharmacokinetics (e.g., plasma prot...

متن کامل

Fluorene-9-bisphenol is anti-oestrogenic and may cause adverse pregnancy outcomes in mice

Bisphenol A (BPA) is used in the production of plastic but has oestrogenic activity. Therefore, BPA substitutes, such as fluorene-9-bisphenol (BHPF), have been introduced for the production of so-called 'BPA-free' plastics. Here we show that BHPF is released from commercial 'BPA-free' plastic bottles into drinking water and has anti-oestrogenic effects in mice. We demonstrate that BHPF has anti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 99 1  شماره 

صفحات  -

تاریخ انتشار 2007